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Abstract—In the study of mechanics and optimal con- 
trol, one often encounters what is called a two-point 
boundary-value problem (TPBVP). A couple of meth- 
ods exist for solving these problems, such as the Simple 
Shooting Method (SSM) and its variation, the Multiple 
Shooting Method (MSM). In this paper a new method 
is proposed that was designed from the favorable as- 
pects of both the SSM and the MSM. The Modified 
Simple Shooting Method (MSSM) sheds undesirable 
aspects of both previously mentioned methods to yield 
a superior, faster method for solving TPBVPs. The 
convergence of the MSSM is proven under mild con- 
ditions on the TPBVP. A comparison of the MSM and 
the MSSM is made for a problem where both methods 
converge. We also provide a second example where 
the MSM fails to converge while the MSSM converges 
rapidly. 
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1. INTRODUCTION 

A general TPBVP can be written in the following form: 

y'(x) = f(x, y);    a<x<b (1) 

r(y(o),»(fc)) = 0, (2) 

where (2) describes the boundary conditions satisfied 
by the system. Examples are the familiar initial-value 
problem (IVP) and first order necessary conditions ob- 
tained by an application of the Pontryagin Maximum 
Principle in optimal control theory. TPBVPs from op- 
timal control (unconstrained) have separated boundary 
conditions of the type ri(y(a)) = 0 and r2(y(b)) = 0. 

Although not the first to investigate the solutions of TP- 
BVPs, one of the first publications to approach this sub- 
ject was by Keller [2]. Those initial methods were and 
still are referred to as shooting methods. 

Keller [3] develops the SSM and the MSM, referring 
to the MSM as parallel shooting, and also proposes 
a version of parallel shooting that he calls "stabilized 
march." Several years later, J. Stoer and R. Bulirsch [5] 
explored both the SSM and the MSM in great detail, 
while providing several examples and hints for practi- 
cal numerical implementation. 

In this paper a new method is proposed for the solu- 
tion of two-point boundary-value problems that seems 
to converge faster and more accurately than the MSM. 
The existence and uniqueness of solutions to the TP- 
BVP is assumed. 

Generally speaking, existence and uniqueness theo- 
rems for two-point boundary value problems can be 
quite difficult; however, in this next section we quote 
two results that broach this topic. The first is from Stoer 
and Bulirsch [5], and the second is from Keller [2]. 

2. EXISTENCE AND UNIQUENESS 
THEOREMS 

An existence and uniqueness theorem for initial-value 
problems can be found in Hale [1], which is but one of 
many texts that provide this well known result. On the 
other hand, TPBVPs may have multiple or no solution 
at all. For example, consider the following system: 

ii(t) 
i2(t) g(x1,X2) 

0-7803-7231-X701/$ 10.00/©2oo2 IEEE 

where g(-, •) is a continuous function of its arguments, 
and xi(0) = 1, xi(l) = —1. One can easily see that 
the first equation will only allow values of x\ to in- 
crease as time increases. Thus, there does not exist a 
value for 0:2(0) that will drive the value of xi from 1 
at t = 0 to —1 at t = 1. Because of this fact, ex- 
istence and uniqueness theory for TPBVPs is consid- 
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erably less developed and less understood than that of 
IVPs. Despite these drawbacks, below are two exis- 
tence and uniqueness theorems that are applicable to 
much smaller classes of functions f(x, y). 

General Boundary Conditions 

Theorem 2.1: For the two-point boundary-value prob- 
lem (l)-{2)> let the following assumptions be satisfied: 

1. / and Dyf are continuous on S = {(i, y)\a < x < 
b,ye%n} 

2. There is a *(•) 6 C[a,b] with \\Dyf(x,y)\\ < k(x) 
for all (x, y) e S. 

3. The matrix 

P(u,v) = Dur(u,v) + Dvr(u,v) 

admits for all u, v € »n a representation of the form 

P(u,v) = P0(I + M{u,v)) 

with a constant nonsingular matrix P0 and a matrix 
M = M(u, v), and there are constants p and m with 

l|M(W,t/)|| <p<l,     HP^ZVK«)!! < m 

forallu,veft". 

4. There is a number A > 0 with A + p < 1 such that 

j k(t)dt<]n(l + -\ 

Then the boundary value problem (1) has exactly one 
solution y(x). 

Proof: For a proof of this theorem, consult Stoer 
and Bulirsch [5], page 510. ■ 

Separated Boundary Conditions 

For a theorem that will apply to separated boundary 
conditions, we consult Keller [2]. Consider the follow- 
ing second-order system: 

y" = f(x,y,y');   a<x<b 

aoy(a) - aiy'(o) = a, \a0\ + \ai\ £ 0; 

boy(b) + hy'(b) = ß, |&o| + 1^1 ^ 0.     (3) 

Theorem 2.2: Let the function f(x, y, y') in (3) satisfy 
the all of the following: 

1 • /(*> V, y') is continuous on D = {(x, y, y') | 
a<x<b,   y2 + (y')2<oo} 

2- /(^.J/.J/') satisfies a uniform Lipschitz condition 
on R in y and y'. 

3- f{x, y, y') has continuous derivatives on D which 
satisfy, for some positive constant M, 

(b) 
df 
dy' 

<M 

4. The coefficients in (3) satisfy a0ai > 0,    60&i > 
o,  kl + M^o 

Then the boundary-value problem in (3) has a unique 
solution. 

Proof:  For proof of this theorem, consult Keller 
[2], page 9. ■ 

Remark. Assumptions 1-4 of Theorem 2.1 are very 
restrictive sufficient conditions. Even simple boundary 
conditions exist that do not satisfy assumption 3; such 
is the case with separated boundary conditions. 

Optimal Control 

Now consider the optimal control problem of finding a 
«(■) for the following system: 

i = f(x,u), x(0) = x0, x(l) = xu        (4) 

such that 

J(u)= j   L(x,u)dt 
Jo 

is minimized.   The Pontryagin Maximum Principle 
yields the existence of functions 

P(t) = \pi(t)p2(t)   ■■■Pn(t)]T 

witht e [0,1]; H(x,u,p) = L(x,u)+pTf(x,u), and 
u* = argminu H(x,u,p) such that 

(*) = 
0     / 
-I   0 VH(x,u*,p) 

satisfies z(0) = x0 and x(l) = Xl. If 
VH(x,axgmmuH(x,u,p),p) is Lipschitz continu- 
ous in the x and p variables then we have uniqueness. 
A sufficient condition is the twice differentiability of 
H(x,u,p). 

Now that we have proof of existence and uniqueness 
for small classes of TPBVPs, let's explore the current 
methods commonly used to numerically solve such a 
problem and take a look at the new method that we 
propose. 

,M %-t 



3. CURRENT METHODS 

Although Theorem 2.1 does not apply to the case of 
separated boundary conditions and Theorem 2.2 itself 
may be somewhat restrictive, separated boundary con- 
ditions are the most commonly encountered in optimal 
control. Because of this, separated boundary condi- 
tions will be used for explanation purposes. The system 
now becomes 

y'(x) = f{x,y);   a<x<b 
Ay{a) = a,    By{b) = ß, (5) 

where A and B are m x n matrices with rank(A) + 
rank(B) = n. 

Simple Shooting 

The Simple Shooting Method, as the name implies, 
is the simplest method of finding a solution to such a 
problem. The idea is to convert (5) into an initial-value 
problem (IVP): 

2/'(*) = /(z>2/); a<x<b 

y(a) = ya, (6) 

where ya is composed of known states from Ay (a) = 
a and guesses for the unknown states s0. Now, y(x) e 
&n, a e Um, and/? e W. A necessary condition 
to keep the problem from being inconsistent is that 
m + p = n. To form an IVP out of (5), one needs 
to guess initial conditions for the (n - m) components 
of y{x) that do not already have initial conditions at 
x = o. Let s0 € äftn-m be the guess for the unknown 
initial conditions and sk; k > 1 subsequent corrections 
of the vector s0. With s0, one can now integrate (6) for- 
ward in the time variable x. Integration is performed 
from x = o all the way to x = 6. Then compute the 
error e = \\By(b) - ß\\2. With this information, a cor- 
rection is made to the initial guess s0 to yield s1( and 
the integration is performed again. This process is re- 
peated over and over until e < s, where e > 0 is small. 
How the correction is made will be addressed shortly. 

For illustration purposes only, consider Figure 1 which 
represents an example of Simple Shooting for (6). We 
assume that there exists a unique solution to the prob- 
lem. Every point on the plot represents a vector in SRP. 

There can be serious problems with the accuracy of the 
SSM. The problems occur when making the correction 
to the Sk vector. This vector is usually corrected us- 
ing a modified Newton's Method, and in practice the 
system must be linearized to use this method. If e is 
large, then convergence can be quite slow (please re- 

Figure 1. Illustration of the Simple Shooting Method 

fer to page 511 of Stoer and Bulirsch [5]). This draw- 
back of the SSM can be fixed by implementing what is 
known as the Multiple Shooting Method. 

Multiple Shooting 

The Multiple Shooting Method begins with the choice 
of a Lipschitz continuous function <p(x) that satisfies 
A<p(x) = a and B<p(x) = ß. An initial guess of un- 
knowns, s0, must be made. Then, (6) is integrated until 
\\y(x, s0) - (p(x)\\ > e for some e > 0. We designate 
the time variable at this point as xx. Now the integra- 
tion of the system continues from xi using <p(xi) as 
the initial 'guess' for the solution. This process contin- 
ues until the integration reaches x = b. Now the error 
function e(s) = \\y{xi) - j/i||2 is formulated where 
s = [so 2/i • • • 2/k-i]T and yt is the initial state for 
the trajectory in the interval [xi,xi+i]. After this is 
accomplished, a correction is made to s using a modi- 
fied Newton's method, and the process is repeated. The 
starting trajectory is not used after the first iteration. 

Figure 2 illustrates the MSM. Once again, three iter- 
ations are displayed for this method. The correction 
process stops when e(s) < d < e for some ex > 0. 

A problem with the MSM is the discontinuity of the 
trajectory found by the MSM at the points xt; i = 
1,..., k - 1. The integration and corrections of s 
will continue until a desired level of closeness is de- 
termined, but this final value of the vector s can still 
be far from an optimal solution due to the unstable na- 
ture of many systems in the forward direction. If (6) 
is re-integrated to result in one continuous trajectory 
for the system, the end values By(b) need not be any- 
where close to ß and almost certainly will not be. An- 
other problem is computation. During the process, one 
must invert many matrices of the size [n(k - 1) + p], 



r 

a xi x2 b    x 

Figure 2. Illustration of the Multiple Shooting Method 

where k can be quite large depending on the guesses 
[so <p{xi)--- <p{xk-i)]T for the initial trajectory. 
Note that A; cannot be reduced even as the guesses im- 
prove. 

Example 3.1: Consider the following system: 

Vi(«) 
2/2 (*) 1/4(3;) 

2/2 (*) 
yi(x) 

' ¥i(0) ' 
. 1/2(0) 

= ' 1 " 
1 5 

' 2/i(l) ■ 
. 2/2(1) 

= _ 
' 2 " 

2 (7) 

where 0 < x < 1. This system was solved with the 
'bad' initial guess SQ = [-100 2]T with the parame- 
ters of the code as follows: 

. The time step h = 0.01. 

• e was set to 1. 

• Newton's Method is stopped when the solution is 
found to be in an e\ ball of size ei = 10~3 

For this example <p(x) = x[l 1]T + [1 1]T. The 
following results were obtained. The MSM corrects 
s0 to [0.70 0.70]T in 8.543 seconds. Figure 3 shows 
the discontinuous segments obtained after the conver- 
gence of the iterations. One can see the discontinuous 
segments connecting the given initial and desired final 
states. However, when this very system is re-integrated 
using the so vector determined to be the correct one by 
the MSM, the first two components of the solution do 
not end up within 10~3 of [2 2]T (please see Figure 4. 
Instead, the solution ends up being close to [2.5 2.5]T. 
Obviously, these are not desirable results. 

Note that while using the MSM one does not have con- 

trol over the error in the states at the final time. It de- 
pends on the particular system being considered. For 
the sample problem, in order for the error between the 
actual and desired final states to be small, we reduced 
the time step to h = 0.001. This time MSM corrects 
the unknown states s0 to [0.42 0.42]T in 16.634 sec- 
onds. Figure 5 shows both the result of MSM and the 
final trajectory after re-integration. 

 ':•- ...■ 
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Figure 3. Discontinuous segments connecting the ini- 
tial and desired final states while using the MSM. 
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Figure 4. Plot of the states while using the result of 
the MSM (ft = 0.01 seconds). 

4. MODIFIED SIMPLE SHOOTING 

Description of Algorithm 

The Modified Simple Shooting Method begins with the 
selection of a Lipschitz continuous starting path of in- 
tegration, <p(x), such that Aip(a) = a and B(p(b) = ß. 
Again, an initial guess of unknowns, SQ must be made. 
Then, (6) is integrated until \\y(x, s0) - <p(x)\\ > £ for 
some e > 0. Then we designate si0 = SQ. A modified 



Figure 3 illustrates the Modified Simple Shooting 
Method. In this case, it took three overall 'shots' to 
integrate from x = a to x = b. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Figure 5.   Plot of the states while using the result of     o x\ x2 b    x 

the MSM (h = 0.001 seconds). Figure 6  illustration 0f the Modified Simple Shooting 
Method 

Newton's Method is then used to correct the 'guess' 
si0. The iteration stops when \\y(x, sik) — >p(x)\\ < E\ 
where e\ is chosen such that £\ < e. We then let 
«i = sik> and proceed with the integration of the 
system,(6) where y(a) is found using Ay(a) = a and 
«1- 

The modified Newton's Method mentioned above is 
found in Stoer and Bulirsch [5]. The following is an 
outline ofthat method for the first iteration: 

1. Choose a starting point s0 € U
n~m 

2. For each i — 0,1,... define sii+1 from si4 as fol- 
lows: 

(a) Set 
di = DFisuy'Fisu), 

"     caad(DF(8U))' 

and let hi(r) = h(sit — rdi), where h(s) = 
F(s)TF(s). Determine the smallest integer j > 0 sat- 
isfying 

ht(2-') < hi(0) - 2-^HdiH ||DÄK)II- 

(b) Determine Aj so that A(sii+l) = mino<K<j/i»(2-K), 
and let 

«ii+1 = «ii + Ajdj. 

The MSSM continues until ||j/(x,sg) — f(x)\\ < e at 
each x £ [a, 6]. In this last step, we are performing ex- 
actly the SSM for the original system, but with a start- 
ing initial guess sq that keeps By(b) close to ß. This 
will prevent any numerical divergence. 

Convergence of the MSSM 

Theorem 2.1 provided us with a somewhat limited exis- 
tence and uniqueness theorem. Theorem 2.2 was more 
useful in the sense that it applied to the case of sep- 
arated boundary conditions. For the purpose of this 
section, we shall assume the existence of a solution to 
(5) for an entire family of boundary conditions. More 
specifically, suppose that the BVPs 

y'(x) = f(x,y) 
Ay(a) = a,  By(x) = B<p(x) 

have unique solutions where <p(-) was the function cho- 
sen initially. This is necessary to assume, as a solution 
to the overall problem may not directly imply the exis- 
tence of a solution to one of the intermediate reduced 
problems. Now we can consider the main theorem of 
this report on the convergence of the Modified Simple 
Shooting Method with certain assumptions. 

Theorem 4.1: Consider the Two-Point Boundary-Value 
Problem as described in (5). Let y(x) denote the solu- 
tion to this problem. The Modified Simple Shooting 
Method, as described earlier, converges to y{x) when 
applied to (5). 

Proof: In order for the MSSM to converge to 
y{x), it must first converge to j/i(x) at each interme- 
diate point Xi, where i = 1,2,..., fc — 1, and y~i(x) 
is the solution of the reduced problem on [a, x,] for 
i= 1,2,...,*; — 1. For example, yi(x) is the solution 
to the problem 

Vi(x) = f(x,y~i), a<x<xi 



Ay(a) = a,  By(x{) = ip(Xl) 

where <p(x) is the reference path mentioned in the de- 
scription of the algorithm. As such, it is only necessary 
to show two things to complete this proof. 

1. The sequence of points {xn}™=1 € 3? converges to 
the right endpoint b. 
2. The SSM converges when existence is known. 

The latter is a result of the modified Newton's Method, 
which is guaranteed to find a solution for large classes 
of functions, if it exists. As existence of a solution y(x) 
is being assumed, the modified Newton's Method guar- 
antees that the SSM converges to y{x). 

Now assume that after the modified Newton's Method 
is performed at x € [a, b], the integration proceeds 
to x* > x. It is necessary to show that (x* - x) 
is bounded below by a positive number. y(x,sm) is 
a continuous function of x and tp(x) is a Lipschitz 
continuous function of x. Thus, d{tp;y,sm){x) = 
\\y{x,sm) - <p{x)\\ is a Lipschitz continuous func- 
tion of x. By the compactness of [a,b], there is a 
uniform Lipschitz constant, fc for d((p; y, ■). Thus, 
\d(<P\y,sm)(x)-d(<p;y,sm)(x*)\ < fc|ar-x*|. When 
the integration of the system stops, \d(ip;y,sm)(x) - 
d(<p;y,sm)(x*)\ = e-ei.Then£-e1 < fc(x*-x),or 
(x* - x) > £j£>- > 0. This means that the integration 
continues past x, and by the compactness of [a, b], the 
process must extend all the way to x = b. ■ 

Examples 

Remark. All computations in the following examples 
were performed in the MATLAB environment, Ver- 
sion 6.1.0.450 Release 12.1, running on a Microsoft 
Windows 2000 Professional operating system with an 
AMD Athlon processor running at 1.2 GHz. 

A Linear Example— 

Example 4.1: Consider the simple system of Example 
3.1. The MSSM was applied to the same system with 
the same parameters in the code. 

The MSSM finds a solution in 1.001 seconds with s 
corrected to [0.39 0.39]T, which is about 8 times faster 
than the MSM. The corrections to s by both methods 
do not give the same result. The discontinuity problem 
does not arise with the MSSM, since the final trajectory 
is a continuous one. 

An Application in 50(3)— Now we will look at an 
example in the three dimensional special orthogonal 

0 0.1 02 03 04 05 0.« 07 0> 09 

Figure 7. Plot of the states for the trajectory planning 
problem using MSSM. 

group or 50(3). SO(n) is defined as follows: 

SO(n) = {Ae W,Xn\detA = 1, ATA = 7nXn} . 

This example is actually an optimization problem on 
the set of orientation matrices in three dimensional 
space. Consider the following system. 

Q   =   QSl 

ft 

A 
h J 

-iPixfi + fixi(p2xn) 
-\P2 X fi - Pi 

(8) 

Q, SI, Pi, and P2 are all functions of time, but the de- 
pendence on time, t, has been suppressed for ease of 
writing. SI, Pi, and P2 are vectors in Si3, whereas Q is 
a matrix in SR3"3. SI is a little more complicated; it is 
a skew-symmetric matrix formed from the vector SI as 
such. 
If 

then 

Sl = 

Sli 
Sl = Sl2 

Sl3 

j 

0 -n3 n2 
Sl3 0 -fi] 

-Sl2 Sli 0 

Qinitial, Slinitial,Qdesired and Slde,ircd    are    knOWB. 
The solution is sought for 0 < t < 1. 

For this particular example, further obstacles were to 
be overcome. It was required that Q(t) € SO(3) at ev- 
ery instant of time t. Furthermore, there was tie obsta- 
cle that we must integrate forward in time four equa- 
tions, three of which are vector valued equations and 
one matrix valued equation. But, the matrix equation 



depended only upon the value of Q and hence fi at each 
instant of time. Because of this and the fact that none 
of the other equations depend on Q, it was possible to 
integrate the matrix equation separately, but still for- 
ward in time at the same time as the vector equations. 
To keep Q(t) € 50(3), Rodriques' formula was used, 
which can be found in Murray, Li, and Sastry [4]. The 
formula is^ 

ene _ I + ösine + fi2(l - cosG). 

The initial and final values of Q and fi were generated 
randomly by MATLAB and were exactly the same for 
both the MSSM and the MSM. Those values were 

Qi itial 

0.57     0.82     0.08 
-0.78   0.57   -0.25 
-0.25   0.08     0.97 

" 0.95 " 
^initial — 4.34 

7.09 
) 

" -0.27 0.96 -0.01 " 
desired — -0.84 -0.23 0.50 

0.48 0.14 0.87 

" 1.90 " 
* ^desired — 8.67 

4.18 

The results for this example again heavily favored the 
Modified Simple Shooting Method. After 47.12 sec- 
onds, the MSSM obtained the following values for fi 
and Q at time t = 1, 

0(1) 
-0.27     0.96     -0.01 
-0.84   -0.23     0.50 
0.48      0.14      0.87 

is not the case with Qdesired and Q(l). One must be 
more careful. It is desired to have a measure of close- 
ness within the group SO (3), not the space of all 3x3 
matrices. To do so, we take the matrix logarithm of 
the quantity Q(1)TQ desired, which will yield a skew- 
symmetric matrix. We then take the norm of this ma- 
trix. The Multiple Shooting Method yields 

Hatred — 0(1)|J = 2.74, 

||l0g(Q(l)TQ<ieSired)|| = 2.62. 

The Modified Simple Shooting Method yields 

W^desired - fi(l)|| = 0.0013, 

|| log(Q(l)TQdesire<i)|| = 0.0003. 

The MSM took more than 10 times as long and the 
results are not close at all to the desired values; these 
results speak for themselves. 

1| 1 1 1 1 r- 

-«.5 

I   -1. 

—i 1 r- 

_1 1 I I I I L_ 

" 0 0.1 02 0.3 0.4 0.5 0.6 0.7 O.B 0.9 1 

0 0.1 02 0.3 0.4 0.5 0.6 0.7 OJ 0.9 1 

0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Figure 8. Plot ofZYXEuler angles. 

fi(l) = 
1.90 
8.67 
4.19 

The Multiple Shooting Method proved inadequate for 
this problem. After 606.89 seconds, the MSM obtained 
these results, 

Q(i) = 
0.09 -0.01 1.00 
0.99 -0.06 -0.09 
0.06 1.00 

2.10 

0.00 

1) = 10.81 
5.89 

To measure closeness the normal Euclidean norm can 
be used to compare ildesired and ^(1); however, this 

! ! ! 

-T- 
....:.,.. ••'■■•:••-v:- 

0             0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9           1 

0            0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 OS           1 

'V- : 
0 0.1 02 0.3 0.4 0.5 0.6 0.7 OM 0.9 1 

Figure 9. Q matrix components. 
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Figure 10. Angular velocity. 

5. CONCLUSIONS 

In this report, a new method for solving two-point 
boundary-value problems was described. Although 
convergence is not so laborious to investigate, it was 
shown by two examples of theorems how difficult it 
is to prove existence and uniqueness for two-point 
boundary-value problems. Nonetheless, three exam- 
ples were given, among many performed, that clearly 
show that the Modified Simple Shooting Method per- 
forms better and faster than the Multiple Shooting 
Method. 

First, it requires the inversion of much smaller matri- 
ces than those required to be inverted in the MSM. The 
MSSM requires the inversion of matrices that are n x n; 
whereas, the MSM requires the inversion of matrices 
that are [n(k -1) +p] x [n(k -1) +p]. This fact alone 
could account for many seconds of computation time 
saved as systems become larger and larger. 

Another fact that makes the MSSM more appealing 
is continuity of integration trajectory. This property 
is very important in optimal control problems where 
the systems are unstable in forward time. The Modi- 
fied Simple Shooting Method integrates the system in 
one continuous path every time it shoots the system for 
an updated s vector. The Multiple Shooting Method 
does not have this characteristic. In fact, for a partic- 
ular example of the MSM, if A; intermediate shots are 
taken then every overall shot of the system from x = a 
to x = b will consist of fc - 1 discontinuities. Each 
of these discontinuities are impossible to correct. The 
best the method has to offer is to reduce the magni- 
tude of the discontinuities. Due to the instability of 
many systems in the forward direction, an erroneous 
solution may be obtained if the system is re-integrated 

with what is supposed to be an accurate approximation 
to the actual unknown initial conditions. 
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